
Week 6 - Friday



 What did we talk about last time?
 Exam 1!

 Before that:
 Review
 Attacks against hash functions
 Digital signatures











 When people talk about quantum computers in the context of 
cryptography, they're usually talking about one of two very 
different things:
 Breaking cryptography with quantum computers
 Using quantum mechanics to send secret messages



 A quantum computer is built using qubits instead of classical 
bits for memory

 A qubit is not necessarily 1 or 0
 Instead, it can be a superposition of them (both at the same time) 

 A quantum computer may be able to explore many possible 
answers at the same time

 After computation is complete, the qubits are measured
 Measuring collapses their quantum states into either 1's or 0's



 Shor's algorithm is an algorithm invented by Peter Shor in 
1994 to factor integers

 With enough qubits, Shor's algorithm can factor an integer in 
O((log N)2(log log N)(log log log N)) time
 In other words, polynomial in the length of the number N that is 

being factored
 RSA depends on the difficulty of factoring
 Shor's algorithm can be adapted to solve the discrete log 

problem as well



 Break all popular public key cryptography
 The RSA, El Gamal, and Elliptic Curve public key systems can all be 

broken by Shor's algorithm
 But  there are some other systems out there that are not known to 

be vulnerable to quantum algorithms
 Get a quadratic speedup when trying to brute force 

symmetric ciphers like AES

 Meaning that 2𝑛𝑛 = 2
𝑛𝑛
2 attempts might be needed instead of 2𝑛𝑛

 Suggests that key lengths should be doubled



 2001: Factor 15 into 3 × 5
 2012: Factor 21 into 3 × 7
 2012: Factor 143 into 11 × 13
 2012: Factor 56153 into 241 × 233 (although not realized until 2014)
 2019: A Google quantum computer sampled a random quantum circuit 1,000,000 times in 

just over 3 minutes when simulating it with a supercomputer would have taken 10,000 
years …

 2022: Factor 261980999226229 into 15538213 × 16860433 (but using a kind of quantum 
computer that probably won't work for much larger numbers)

 2024: Google quantum computer did something in 5 minutes they claim would take a 
supercomputer 10 septillion years to solve … 

 There is some progress!
 The bigger factoring ones are using a different approach to quantum computing than 

Shor's algorithm
 A breakthrough could be soon …



 There are lots of approaches for making quantum computers
 But none of them look very good yet

 It's hard to make qubits that behave right
 It's hard to make algorithms that efficiently query the qubits
 A phenomenon called quantum decoherence causes qubits to lose 

their superposition
 Some quantum computers have to be cooled to almost absolute zero to 

reduce decoherence
 D-Wave is the best known quantum computer manufacturer
 So far, none of their computers outperform classical computers on tasks 

that most people care about



 Because of potential quantum advances, cryptographers have 
worked on quantum-resistant algorithms, also called post-
quantum cryptography (PQC)
 Kyber is a key encapsulation mechanism with 512, 768, and 1024 bit keys 

that is supposed to be as strong as AES with 128, 192, and 256 bit keys, in 
a quantum environment

 It shares symmetric keys (like AES), instead of something like RSA or 
Diffie-Hellman

 It uses lattice theory, a deep math thing
 There are also hash-based approaches to PQC

 AES using 256 bit keys is considered quantum secure



 The other (and possibly more useful) way to use quantum 
mechanics is as a way to send secret information

 To do so, Sam (the sender) sends Ruth (the receiver) photons
 What's really remarkable about this kind of quantum 

cryptography is that no one can eavesdrop on it



 Light travels with a certain orientation, called its polarization
 Real polarization can be between 0° and 180° (the book says 

360 °, but the wave goes up and down, so it doesn't really 
make sense to say that)

 We can break it down into 4 directions by rounding: ↑ → ↗ ↘
 It's critically important that it's hard to distinguish ↑ and ↗ and 

hard to distinguish → and ↘



 For each bit Sam wants to send, he randomly decides if he's 
sending straight or diagonal

 Ruth also randomly decides if she's receiving straight or 
diagonal
 If she uses the wrong filter, ↑will be confused with ↗ or →will be 

confused with↘

Basis Filter 0 1

Straight + ↑ →
Diagonal X ↗ ↘



 Ruth receives symbols, but she isn't sure what she got
 On a public channel, she tells Sam which basis she was using 

for each bit
 Then Sam knows which ones she would have gotten right and 

which ones she would have gotten wrong
 He tells her which ones she would have gotten right
 Those are the ones that they keep



 It's not a great way to send a message
 But it is a great way to agree on random bits
 In other words, a session key for regular communication

 If Eve is eavesdropping, quantum properties say that she'll 
disturb the polarization of the photons

 Thus, Ruth will get garbage
 To make sure that no one is eavesdropping, Sam and Ruth 

share some bits publically, to see if they agree



 Most importantly, the process is inefficient
 On average, half of the bits are bad, since Ruth had the wrong filter
 Even more bits have to be ignored in order to do error checking and 

testing to see if there was an eavesdropper
 Making the actual photon guns isn't easy, although a kind of 

pulsed laser has been successfully used
 Another problem is that you have to have an optical quantum 

channel with anyone you want to exchange a key with
 Either through the atmosphere or through fiber optics



 This technology is moving from theory into practice
 Government labs in the US and the UK have tested devices 

working through the atmosphere at up to 45 km
 Businesses that want to send high security traffic may 

negotiate keys using quantum key distribution in our lifetimes





 For now, we will be pretty broad in our definition of programs
 OS
 Applications
 Databases
 Almost any other software

 What is a secure program?
 How do we know?
 How do we keep programs free from flaws?
 How do we protect computing resources against programs that 

contain flaws?



 We can judge security by the number of faults found in a 
program

 Count the number of faults found and fixed
 Program is good if it has few faults to begin with, right?
 But isn't the program good if we've fixed a lot of faults?
 Which is more meaningful?



 In the early days, security was shown by finding faults and 
patching them

 Unfortunately, patching a fault often led to creating another 
one

 Why?
 The patch fixed a narrow problem, but the cause was more general
 The fault had non-obvious side effects
 Fixing one problem caused a problem somewhere else
 The fault was poorly fixed because a proper fix might impact 

functionality or performance



 We talk about software bugs, but the term is vague
 The IEEE favors the following:
 Error: A human mistake in developing software (bad design, bad 

implementation, typo… )
 Fault: An incorrect step inside of a program (many faults can be 

caused by a single error)
 Failure: A system departing from its required behavior (a failure 

might not happen if a particular fault is never executed)



 Unexpected behavior is called a program security flaw
 The IEEE terminology is for software engineering and doesn't 

match exactly
 A program security flaw could be a fault or a failure
 Intentional security incidents are called cyber attacks
 Cyber attacks are not as common as the problems caused by 

unintentional flaws



 It's very difficult to eliminate program security flaws for two 
reasons:

1. Programs should do a long list of operations correctly and 
shouldn't do another (possibly infinite) list of operations
 The number of combinations to test is staggering

2. Software engineering develops faster than computer 
security
 We're always playing catch-up





 Landwehr et al. divided flaws into intentional and inadvertent
 The inadvertent flaws were divided into six categories

1. Validation: Incomplete or inconsistent permission checks
2. Domain: Poorly controlled access to data
3. Serialization and aliasing: Mistakes in program flow order
4. Identification and authentication: Incorrect basis for authentication
5. Boundary condition: Failure on the first or last case
6. Logic: Any mistakes in logic not already covered

 Other lists have been made, but this one is representative
 The next slides will cover some common types



 A buffer overflow happens when data is written past the end (or beginning) of 
an array

 Consider the following Java code:

 In Java, this code will throw an ArrayIndexOutOfBoundsException, but 
it will not write memory where it shouldn't

 In C/C++, it might

char[] buffer = new char[10];

for(int i = 0; i < 10; ++i) {
buffer[i] = 'A';

}
buffer[10] = 'B';



 It could overwrite:
 User data

 User code

 System data

 System code

A A A A A A A A A A B

User Data

A A A A A A A A A A B

User Data User Code

A A A A A A A A A A B

User Data System Data

A A A A A A A A A A B

User Data System Code



 Without the presence of malicious attackers, buffer overflows 
can corrupt your data (or the system's) or crash your program

 A malicious attacker can exploit buffer overflows
 By inserting data into system data or code so that the system does 

what he or she wants
 By overwriting the stack pointer to cause arbitrary code in the 

attacker's memory to be executed
 Memory segmentation makes these attacks less common but 

still possible





 Malicious code
 Start countermeasures
 Ashley Gutierrez presents



 Read sections 3.1, 3.2, and 3.3
 Start on Project 2
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