
Week 6 - Friday

 What did we talk about last time?
 Exam 1!

 Before that:
 Review
 Attacks against hash functions
 Digital signatures

 When people talk about quantum computers in the context of
cryptography, they're usually talking about one of two very
different things:
 Breaking cryptography with quantum computers
 Using quantum mechanics to send secret messages

 A quantum computer is built using qubits instead of classical
bits for memory

 A qubit is not necessarily 1 or 0
 Instead, it can be a superposition of them (both at the same time)

 A quantum computer may be able to explore many possible
answers at the same time

 After computation is complete, the qubits are measured
 Measuring collapses their quantum states into either 1's or 0's

 Shor's algorithm is an algorithm invented by Peter Shor in
1994 to factor integers

 With enough qubits, Shor's algorithm can factor an integer in
O((log N)2(log log N)(log log log N)) time
 In other words, polynomial in the length of the number N that is

being factored
 RSA depends on the difficulty of factoring
 Shor's algorithm can be adapted to solve the discrete log

problem as well

 Break all popular public key cryptography
 The RSA, El Gamal, and Elliptic Curve public key systems can all be

broken by Shor's algorithm
 But there are some other systems out there that are not known to

be vulnerable to quantum algorithms
 Get a quadratic speedup when trying to brute force

symmetric ciphers like AES

 Meaning that 2𝑛𝑛 = 2
𝑛𝑛
2 attempts might be needed instead of 2𝑛𝑛

 Suggests that key lengths should be doubled

 2001: Factor 15 into 3 × 5
 2012: Factor 21 into 3 × 7
 2012: Factor 143 into 11 × 13
 2012: Factor 56153 into 241 × 233 (although not realized until 2014)
 2019: A Google quantum computer sampled a random quantum circuit 1,000,000 times in

just over 3 minutes when simulating it with a supercomputer would have taken 10,000
years …

 2022: Factor 261980999226229 into 15538213 × 16860433 (but using a kind of quantum
computer that probably won't work for much larger numbers)

 2024: Google quantum computer did something in 5 minutes they claim would take a
supercomputer 10 septillion years to solve …

 There is some progress!
 The bigger factoring ones are using a different approach to quantum computing than

Shor's algorithm
 A breakthrough could be soon …

 There are lots of approaches for making quantum computers
 But none of them look very good yet

 It's hard to make qubits that behave right
 It's hard to make algorithms that efficiently query the qubits
 A phenomenon called quantum decoherence causes qubits to lose

their superposition
 Some quantum computers have to be cooled to almost absolute zero to

reduce decoherence
 D-Wave is the best known quantum computer manufacturer
 So far, none of their computers outperform classical computers on tasks

that most people care about

 Because of potential quantum advances, cryptographers have
worked on quantum-resistant algorithms, also called post-
quantum cryptography (PQC)
 Kyber is a key encapsulation mechanism with 512, 768, and 1024 bit keys

that is supposed to be as strong as AES with 128, 192, and 256 bit keys, in
a quantum environment

 It shares symmetric keys (like AES), instead of something like RSA or
Diffie-Hellman

 It uses lattice theory, a deep math thing
 There are also hash-based approaches to PQC

 AES using 256 bit keys is considered quantum secure

 The other (and possibly more useful) way to use quantum
mechanics is as a way to send secret information

 To do so, Sam (the sender) sends Ruth (the receiver) photons
 What's really remarkable about this kind of quantum

cryptography is that no one can eavesdrop on it

 Light travels with a certain orientation, called its polarization
 Real polarization can be between 0° and 180° (the book says

360 °, but the wave goes up and down, so it doesn't really
make sense to say that)

 We can break it down into 4 directions by rounding: ↑ → ↗ ↘
 It's critically important that it's hard to distinguish ↑ and ↗ and

hard to distinguish → and ↘

 For each bit Sam wants to send, he randomly decides if he's
sending straight or diagonal

 Ruth also randomly decides if she's receiving straight or
diagonal
 If she uses the wrong filter, ↑will be confused with ↗ or →will be

confused with↘

Basis Filter 0 1

Straight + ↑ →
Diagonal X ↗ ↘

 Ruth receives symbols, but she isn't sure what she got
 On a public channel, she tells Sam which basis she was using

for each bit
 Then Sam knows which ones she would have gotten right and

which ones she would have gotten wrong
 He tells her which ones she would have gotten right
 Those are the ones that they keep

 It's not a great way to send a message
 But it is a great way to agree on random bits
 In other words, a session key for regular communication

 If Eve is eavesdropping, quantum properties say that she'll
disturb the polarization of the photons

 Thus, Ruth will get garbage
 To make sure that no one is eavesdropping, Sam and Ruth

share some bits publically, to see if they agree

 Most importantly, the process is inefficient
 On average, half of the bits are bad, since Ruth had the wrong filter
 Even more bits have to be ignored in order to do error checking and

testing to see if there was an eavesdropper
 Making the actual photon guns isn't easy, although a kind of

pulsed laser has been successfully used
 Another problem is that you have to have an optical quantum

channel with anyone you want to exchange a key with
 Either through the atmosphere or through fiber optics

 This technology is moving from theory into practice
 Government labs in the US and the UK have tested devices

working through the atmosphere at up to 45 km
 Businesses that want to send high security traffic may

negotiate keys using quantum key distribution in our lifetimes

 For now, we will be pretty broad in our definition of programs
 OS
 Applications
 Databases
 Almost any other software

 What is a secure program?
 How do we know?
 How do we keep programs free from flaws?
 How do we protect computing resources against programs that

contain flaws?

 We can judge security by the number of faults found in a
program

 Count the number of faults found and fixed
 Program is good if it has few faults to begin with, right?
 But isn't the program good if we've fixed a lot of faults?
 Which is more meaningful?

 In the early days, security was shown by finding faults and
patching them

 Unfortunately, patching a fault often led to creating another
one

 Why?
 The patch fixed a narrow problem, but the cause was more general
 The fault had non-obvious side effects
 Fixing one problem caused a problem somewhere else
 The fault was poorly fixed because a proper fix might impact

functionality or performance

 We talk about software bugs, but the term is vague
 The IEEE favors the following:
 Error: A human mistake in developing software (bad design, bad

implementation, typo…)
 Fault: An incorrect step inside of a program (many faults can be

caused by a single error)
 Failure: A system departing from its required behavior (a failure

might not happen if a particular fault is never executed)

 Unexpected behavior is called a program security flaw
 The IEEE terminology is for software engineering and doesn't

match exactly
 A program security flaw could be a fault or a failure
 Intentional security incidents are called cyber attacks
 Cyber attacks are not as common as the problems caused by

unintentional flaws

 It's very difficult to eliminate program security flaws for two
reasons:

1. Programs should do a long list of operations correctly and
shouldn't do another (possibly infinite) list of operations
 The number of combinations to test is staggering

2. Software engineering develops faster than computer
security
 We're always playing catch-up

 Landwehr et al. divided flaws into intentional and inadvertent
 The inadvertent flaws were divided into six categories

1. Validation: Incomplete or inconsistent permission checks
2. Domain: Poorly controlled access to data
3. Serialization and aliasing: Mistakes in program flow order
4. Identification and authentication: Incorrect basis for authentication
5. Boundary condition: Failure on the first or last case
6. Logic: Any mistakes in logic not already covered

 Other lists have been made, but this one is representative
 The next slides will cover some common types

 A buffer overflow happens when data is written past the end (or beginning) of
an array

 Consider the following Java code:

 In Java, this code will throw an ArrayIndexOutOfBoundsException, but
it will not write memory where it shouldn't

 In C/C++, it might

char[] buffer = new char[10];

for(int i = 0; i < 10; ++i) {
buffer[i] = 'A';

}
buffer[10] = 'B';

 It could overwrite:
 User data

 User code

 System data

 System code

A A A A A A A A A A B

User Data

A A A A A A A A A A B

User Data User Code

A A A A A A A A A A B

User Data System Data

A A A A A A A A A A B

User Data System Code

 Without the presence of malicious attackers, buffer overflows
can corrupt your data (or the system's) or crash your program

 A malicious attacker can exploit buffer overflows
 By inserting data into system data or code so that the system does

what he or she wants
 By overwriting the stack pointer to cause arbitrary code in the

attacker's memory to be executed
 Memory segmentation makes these attacks less common but

still possible

 Malicious code
 Start countermeasures
 Ashley Gutierrez presents

 Read sections 3.1, 3.2, and 3.3
 Start on Project 2

	COMP 4290
	Last time
	Questions?
	Project 2
	Olivia Crespo Presents
	Quantum Cryptography
	Quantum cryptography
	Quantum computers
	Shor's algorithm
	What a quantum computer could do
	What quantum computers have done
	Technical problems
	Quantum resistant algorithms
	Quantum communication
	The setup
	Sending
	Receiving
	Why this works
	Technical problems
	Successes
	Program Security
	Secure programs
	Fixing faults
	Penetrate and patch
	Terminology
	Unexpected behavior
	Why is life so hard?
	Non-malicious program errors
	Flaws
	Buffer overflows
	Buffer overflow
	Buffer overflow security
	Upcoming
	Next time…
	Reminders

